NewsPanda: Media Monitoring for Timely Conservation Action

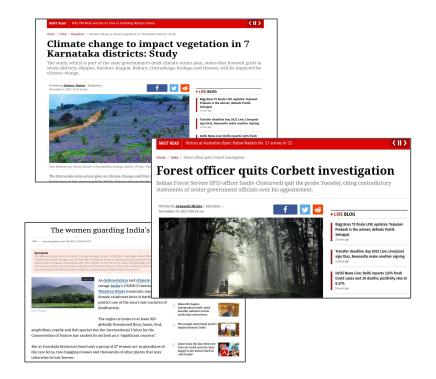
World Wide Fund for Nature, Carnegie Mellon University

Sedrick Scott Keh,^{*1} Zheyuan Ryan Shi,^{*1, 4} David J. Patterson,² Nirmal Bhagabati,^{3†} Karun Dewan,² Areendran Gopala,² Pablo Izquierdo,² Debojyoti Mallick,² Ambika Sharma,² Pooja Shrestha,² Fei Fang¹

> ¹Carnegie Mellon University, ²World Wide Fund for Nature, ³United States Agency for International Development, ⁴98Connect

Motivation

- WWF country offices spend a lot of time and resources looking through various news articles to identify **trends**, events, or threats related to conservation and infrastructure.
 - Identifying 7-10 articles can take 2-3 days to complete
- Having a tool to **automate this process** will save a lot of time for WWF and allow them to more effectively allocate their resources.
- How do we identify and analyze media articles for timely conservation and infrastructure actions?



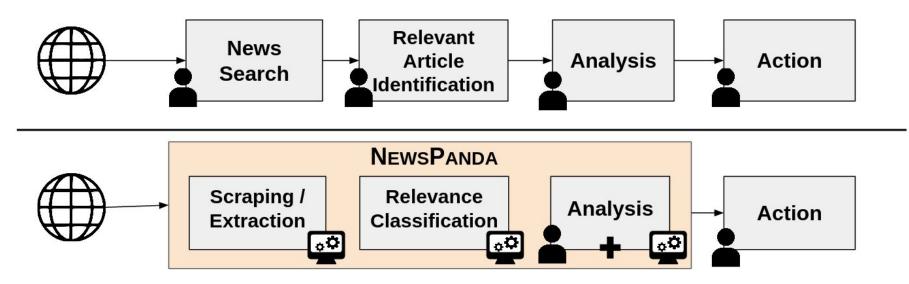
Motivation

- WWF country offices spend a lot of time and resources looking through various news articles to identify **trends**, events, or threats related to <u>conservation</u> and <u>infrastructure</u>.
 - Identifying 7-10 articles can take 2-3 days to complete
- Having a tool to **automate this process** will save a lot of time for WWF and allow them to more effectively allocate their resources.
- How do we identify and analyze media articles for timely <u>conservation</u> and <u>infrastructure</u> actions?

Infrastructure?

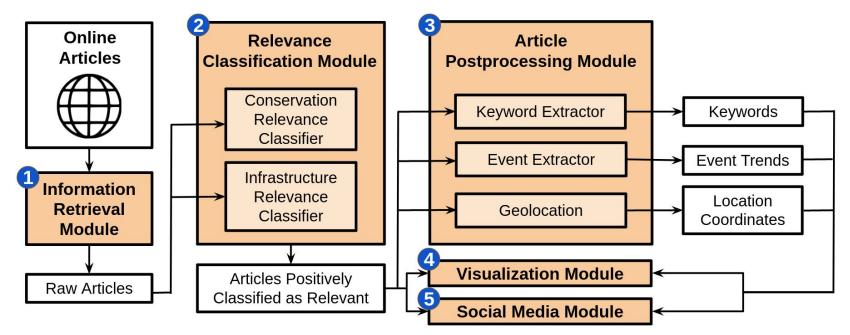
- roads, railways, pipelines, etc.
- Usually high-impact and long-term
- These articles usually cover upcoming developments, which is where WWF can truly perform the necessary interventions

NewsPanda motivation



NewsPanda automates multiple steps in the pipeline, enabling humans to perform the more critical tasks (analysis and action).

NewsPanda pipeline

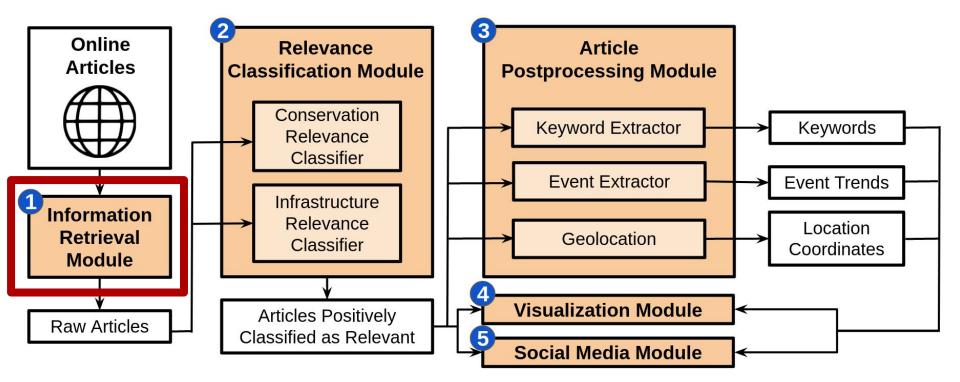


This entire pipeline is ran on a weekly basis.

Dataset

- **Initial dataset** We start off with two datasets, with labels along two dimensions: <u>conservation relevance</u> and <u>infrastructure relevance</u>
 - a. WHS-Corp dataset (44,000 articles; 928 with labels)
 - from Hosseini and Coll Ardanuy (2020)
 - global news articles covering World Heritage Sites around the world
 - only contains labels for conservation relevance
 - b. InfraCorp dataset (4,137 articles; 1,000 with labels)
 - our own dataset which we scrape + annotate
 - focus specifically on India and Nepal
 - scraping done using NewsAPI
 - each of the 1,000 articles is annotated by two domain experts at WWF

NewsPanda pipeline

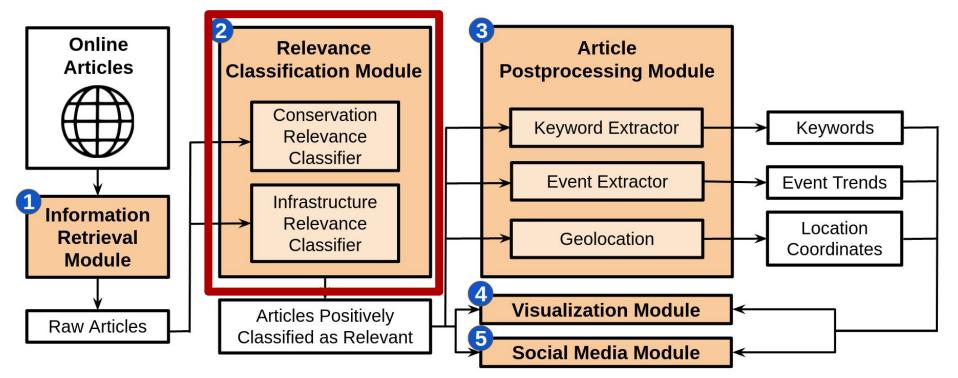


ISC institute for SOFTWARE RESEARCH

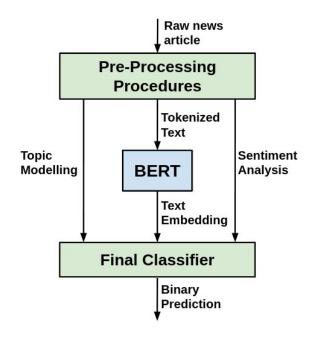
1. Information Retrieval Module

- Use the NewsAPI scraper with search terms taken from a list of curated conservation sites by WWF
- Focus on India and Nepal
- This is ran on a weekly basis

NewsPanda pipeline



2. Relevance Classification Module



We include the following features for each article:

- BERT embedding
- Sentiment analysis score
- Topic modelling vector

Prediction is done along two dimensions: **conservation relevance** and **infrastructure relevance**

2. Relevance Classification Module

Model Acc.		Р	R	F1	
Keyword	0.820 (n/a)	0.317 (n/a)	0.634 (n/a)	0.423 (n/a)	
LSTM	0.711 (0.068)	0.495 (0.097)	0.511 (0.129)	0.504 (0.070)	
GRU	0.729 (0.054)	0.422 (0.110)	0.505 (0.139)	0.475 (0.067)	
BERT	0.860 (0.014)	0.708 (0.032)	0.704 (0.036)	0.706 (0.015)	
RoBERTa	0.867 (0.009)	0.705 (0.044)	0.743 (0.041)	0.721 (0.025)	
NEWSPANDA	0.877 (0.013)	0.729 (0.032)	0.801 (0.051)	0.744 (0.026)	

(a) Scores for Conservation Relevance

Model Acc.		Р	R	F1	
Keyword	0.947 (n/a)	0.250 (n/a)	0.455 (n/a)	0.323 (n/a)	
LSTM	0.908 (0.027)	0.566 (0.160)	0.537 (0.088)	0.554 (0.065)	
GRU	0.895 (0.022)	0.544 (0.109)	0.557 (0.123)	0.553 (0.109)	
BERT	0.922 (0.018)	0.840 (0.154)	0.745 (0.152)	0.771 (0.096)	
RoBERTa	0.916 (0.021)	0.794 (0.091)	0.809 (0.064)	0.799 (0.041)	
NEWSPANDA	0.941 (0.018)	0.880 (0.097)	0.821 (0.051)	0.850 (0.043)	

NewsPanda performs the best across all the models and baselines.

(b) Scores for Infrastructure Relevance

Recall the InfraCorp Dataset

This leads us to two key questions:

- 1. How do we best select which 1,000 articles out of the 4,137 to label?
- 2. How to we best handle label noise in our annotated dataset?

- b. InfraCorp dataset (4,137 articles; 1,000 with labels)
 - our own dataset which we scrape + annotate
 - focus specifically on India and Nepal
 - scraping done using NewsAPI
 - each of the 1,000 articles is annotated by two domain experts at WWF

Recall the InfraCorp Dataset

This leads us to two key questions:

- 1. How do we best select which 1,000 articles out of the 4,137 to label?
- 2. How to we best handle label noise in our annotated dataset?

Confidence-based active learning:

- Train an initial model using the available WHS-Corp dataset
- Select the 1,000 most "difficult" articles, i.e. the articles which the initial model is "least confident" about.

2. Relevance Classification Module

Ablation study: Confidence-based active learning

• Select two sets of 300 articles – set A is actively selected, and set R is randomly selected.

	Dataset	Acc.	Р	R	F1
actively selected —	WHS-CORP	0.911 (0.008)	0.585 (0.035)	0.585 (0.035)	0.586 (0.010)
	WHS+INF.CORP-A	0.921 (0.004)	0.600 (0.019)	0.774 (0.056)	0.670 (0.019)
randomly selected —	WHS+INF.CORP-R	0.916 (0.005)	0.586 (0.035)	0.696 (0.062)	0.637 (0.016)

Using the actively selected set gives a larger performance gain as compared to using a randomly selected set.

Recall the InfraCorp Dataset

This leads us to two key questions:

- 1. How do we best select which 1,000 articles out of the 4,137 to label?
- 2. How to we best handle label noise in our annotated dataset?

Noisy label correction methods:

- Adapt the CORES² loss (Cheng et al. 2021) noise correction algorithm
- Extension of earlier peer loss algorithm frames the task of learning from noisy labels as a peer prediction problem

$$\ell_{\text{CORES}}(f(x_n), \tilde{y}_n) := \ell(f(x_n), \tilde{y}_n) - \beta \cdot \mathbb{E}_{\mathcal{D}_{\tilde{Y}|\tilde{D}}}[\ell(f(x_n), \tilde{Y})]$$

2. Relevance Classification Module

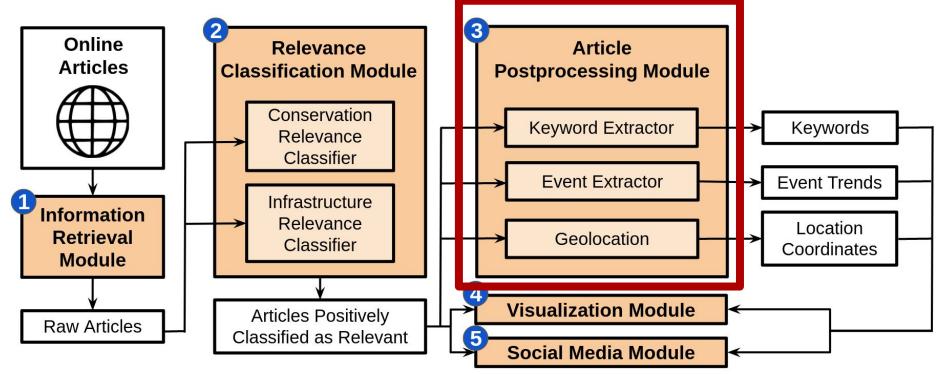
Ablation study: Noisy label correction algorithms

• Investigate the effects of using peer loss and CORES² loss

Noisy Label Correction	Acc.	Р	R	F1
None	0.907 (0.004)	0.566 (0.015)	0.441 (0.055)	0.497 (0.026)
Peer Loss	0.911 (0.006)	0.591 (0.031)	0.465 (0.027)	0.509 (0.017)
CORES ²	0.908 (0.009)	0.584 (0.057)	0.551 (0.050)	0.553 (0.014)

Using CORES² loss yields the best performance compared to using Peer Loss and using no noisy label correction.

NewsPanda pipeline



institute for SOFTWARE RESEARCH

Keyword extraction

(example paragraph)

A 45-year-old man from Chamrajanagar in Karnataka was arrested by the Forest Department for attempting to hunt wild animals and also setting fire in **forest** areas in the Talavadi Forest Range in the Sathyamangalam **Tiger** Reserve here.

Keyword Extractor

	A	B
1	Atmosphere	carbon
2	Atmosphere	CH4
3	Atmosphere	CO2
4	Atmosphere	methane
5	Atmosphere	nitrogen
6	Conservation Keyword	adaptation
7	Conservation Keyword	adaptive management
8	Conservation Keyword	alternative livelihoods
9	Conservation Keyword	animal identification
10	Conservation Keyword	animal traceability
11	Conservation Keyword	animal welfare
12	Conservation Keyword	benefit sharing

We use a list of around 1000 keywords (level 1 and level 2), then check for matches in the text.

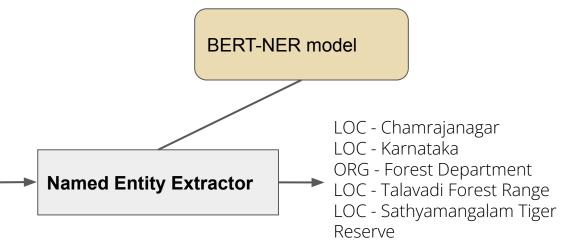
Species- tiger

Terrestrial Habitat - forest

Named entity recognition

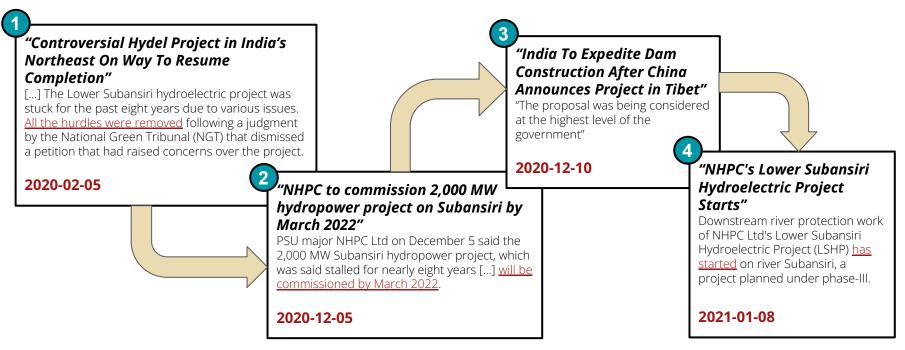
(example paragraph)

A 45-year-old man from Chamrajanagar in Karnataka was arrested by the Forest Department for attempting to hunt wild animals and also setting fire in forest areas in the Talavadi Forest Range . in the Sathyamangalam Tiger Reserve here.



Event timeline

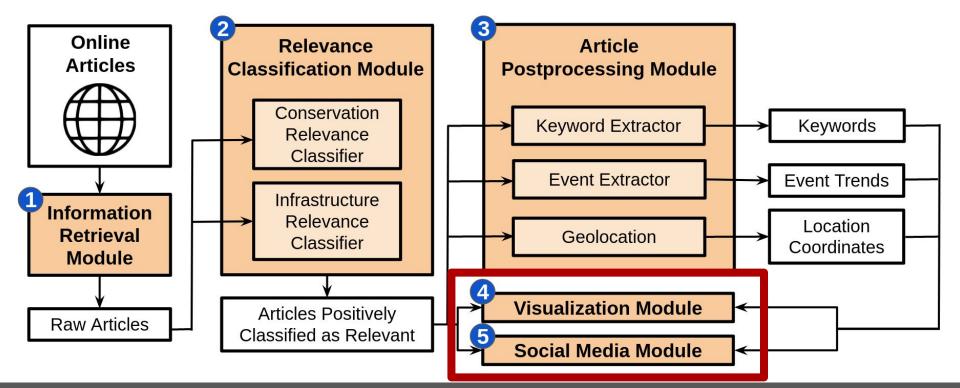
We search for entity "Subansiri", then filter with the keyword "hydroelectric".



Geolocation

- Important to integrate into WWF's GIS systems
- Use a directory of conservation sites from WWF to map articles to their coordinates
- If there is no match in directory, we use the geopy package

NewsPanda pipeline



Deployment

- NewsPanda has been deployed by WWF teams in India, Nepal, and the UK since February 2022
- Three stages of deployment:
 - 1. Pilot study (February 2022)
 - Goal: Test out the pipeline and identify some operational and technical issues in the initial version of NewsPanda
 - 2. Initial deployment (March 2022 to July 2022)
 - Goal: Evaluate the performance of NewsPanda
 - 3. Sustainable deployment (August 2022 onwards)
 - Goal: Make pipeline more automatic and cloud-based

Deployment Results

Quantitative results:

- Each week, the WWF teams from India, Nepal, and the UK evaluated the articles classified by NewsPanda

	Conservation			Infrastructure		
	Р	R	F1	P	R	F1
WWF India	0.849	0.605	0.706	0.462	0.250	0.324
WWF Nepal	0.895	0.917	0.906	0.923	0.308	0.462
WWF UK	0.879	0.823	0.850	1.000	0.455	0.625

- High precision values = trustworthy and reliable system
- **Low recall for infrastructure** = misses out on potential articles; needs to improve more on positively identifying relevant articles

Deployment Results

Qualitative results:

- Two months into deployment, the CMU team carried out semi-structured interviews with their WWF colleagues who have been using NewsPanda outputs in their work

"You're giving us a bunch of articles... over 50 articles a week. We had two interns who spend 2-3 days a week on this and would only give us seven to ten articles. So there is a huge bump in efficiency right there in itself."

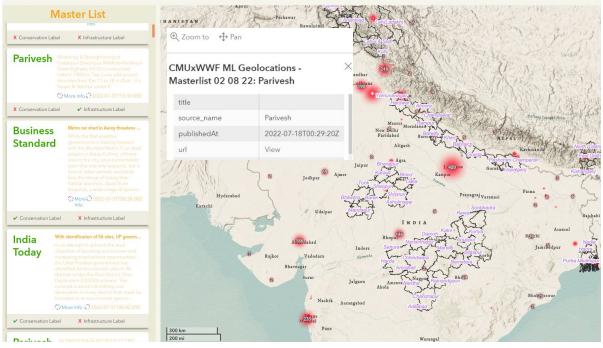
"The data that you're sharing give a global perspective. It is very useful to understand the upcoming projects or mitigation measures that are being adopted on a global scale. So it helps us be informed." "It took us maybe a month to do analyses of three or four infrastructure projects. With **NEWSPANDA**, we can send (stakeholders) 20 or 30 reports in a month."

"It's also a transition in their (WWF staff) job function. They will not just be doing data hunting. They are qualifying themselves to be data analysts."

4. Visualization Module

Project Database Dashboard

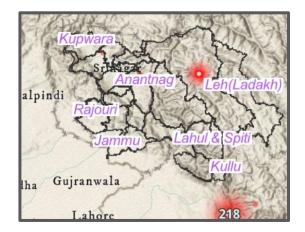
by Carnegie Mellon University (CMU) x WWF India under the Google AI for Social Good Programme



The NewsPanda results are integrated into WWF's GIS systems, which is especially useful for the field teams.

4. Visualization Module – Success Story

- August 2022: NewsPanda highlighted Ikhala Block
 Boundary Kishtwar to Lopara Road in the WWF
 GIS system
- Upon further investigation, it is found that the project would **divert 5.9 hectares of forest land**
- More importantly, WWF found that the project was still at its **pre-proposal stage**. This means WWF would be able to take early action and possibly participate in relevant conversations.



5. Social Media Module

For the general public to benefit from NewsPanda, we also developed a Twitter bot which tweets links and hashtags (keywords) to the relevant weekly articles.

@WildlifeNewsIND

Go follow and share! :)

Wildlife News India @WildlifeNewsIND · Aug 29 ··· Over 5,100 trees to be felled in Delhi for Saharanpur highway construction #Saut #Badarpur #AkshardhamNH9 #Sheesham #OkhlaBirdSanctuary #Delhi #Ashok #Jam #Nee #UttarPradesh #NTPCEcoPark #Saharanpurhighway #BharatmalaPariyojana #Subabul #Be #Champa #DCF #C

business-standard.com

Over 5,100 trees to be felled in Delhi for Saharanpur highway construc... More than 5,100 trees will be felled in Delhi for the construction of the six-lane Delhi-Saharanpur highway by the National Highways Authorit...

 \bigcirc

♪

Current Steps + Future Work

- Expand to more languages and more local media sources
- Starting with **Nepali** language articles
- Multilingual language models (e.g. multilingual BERT, XLM-R)
 - Initial results show **good generalizability** to other languages

- Ongoing challenge: Annotating training data for multiple languages is costly. How can we best use NewsPanda in a few-shot or zero-shot manner?

